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Abstract: Crickets have previously shown the ability to locate a hidden cool
spot in a heated arena [Wessnitzer et al., 2008]. A new paradigm was designed
to replicated these results in which light levels were changed as the cricket moved
across the arena. No learning effect was found, but the crickets had a significant
preference for the quarter of the arena in the lights adjacent to the boundary.
Three visual homing algorithms, Average Landmark Vector [Lambrinos et al.,
1998], Warping [Franz et al., 1998] and Gradient Descent [Zeil et al., 2003] were
implemented in four sets of images, three of which were captured within the
cricket arena. A robotic implementation was also developed. It was found that
the best performing was ALV but only with artificial landmarks. The consistently
best performer was Gradient Descent, although Warping was not unsuccessful.
Finally, the applicability of these findings as algorithms for crickets and robots
was discussed.





Acknowledgements

Thanks must go to Barbara Webb for all her kind help throughout, and to Michael
Mangan for his generosity and friendliness. And thank you to my proofreaders,
notably Dad and Rachael.





Contents

0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Cricket Trials 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Overview of system . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Details of Equipment . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Controlling the lights . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Image capture . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Thresholding and motion detection . . . . . . . . . . . . . 7
1.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Modelling & Algorithms 23
2.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Average Landmark Vector (ALV) . . . . . . . . . . . . . . 23
2.1.2 Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.3 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 ALV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.3 Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.4 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.1 Algorithms for use in robots . . . . . . . . . . . . . . . . . 43
2.5.2 Algorithms as models of crickets . . . . . . . . . . . . . . . 44

2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Conclusion 47

A Pilot experiments 53

B Metrics 57
B.1 Average Angular Error . . . . . . . . . . . . . . . . . . . . . . . . 57

B.1.1 Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

v



B.1.2 ALV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.1.3 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 61

B.2 Rate of Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2.1 Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2.2 ALV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2.3 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 67
B.2.4 Gradient Descent (with previous locations) . . . . . . . . . 69



0.1. INTRODUCTION 1

0.1 Introduction

The aim of this project is to investigate possible mechanisms by which a cricket
can perform visual homing. To this end, I developed a new paradigm in which to
test a cricket’s ability to learn the location of a home location. Their performance
on this was to be compared against the performance of various algorithms upon
a dataset collected from this arena, and a robot platform navigating within the
same arena.

The paradigm I designed was an adaption of the Tennessee Williams paradigm,
which was first used by Mizunami et al. [1993], and aimed to replicate the Morris
water maze paradigm [Morris, 1981] for cockroaches. Both paradigms consist of
an aversive condition which is eased in one invisible spot. A creature can be
said to successfully perform visual homing if they are capable of navigating to
the hidden spot. In the Morris water maze experiment, the aversive condition
was water, and the hidden spot was a submerged platform (allowing the rat to
cease swimming). In the Tennessee Williams paradigm, the aversive condition is
a heated metal floor and the hidden spot is a small cooled area.

Wessnitzer et al. [2008] , following on from suggestive results from Scotto-Lomassese
et al. [2003] repeated this design with the crickets Gryllus bimaculatus. They
found that crickets quickly learnt the location of the cool spot (although they
would not always directly seek it). This was due to visual cues: the learning
effect was not present when the crickets were deprived of all visual cues. This
was confirmed by their response to the backdrop being rotated: they approached
the point corresponding to the cool spot had there been no rotation. There were
effects corresponding to the visual cues the crickets were given: they performed
best when there was a detailed natural scene present, second best when there were
no cues but blank white walls, third best when there were artificial landmarks
attached to the walls, and worst when there was no light at all.

After a series of pilot experiments, I designed a new paradigm that changed the
light conditions depending upon the location of the crickets. When they were
in the aversive section of the arena, bright lights were shined upon them. When
they were in the less aversive spot, the lights turned off. In order to implement
this, I designed a system capable of tracking crickets via an overhead webcam.
Operating via background subtraction, this directly controlled a bank of lights
arrayed above the arena.

To test this paradigm, I carried out a batch of experiments where the arena was
bisected into light and dark halves. These showed that the crickets did not find
the light an aversive stimulus, but rather preferred the section of the arena in
the light near the boundary. Unfortunately, they also did not show change in the
proportion of time spent in any sector. While this does not disprove learning, it
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also offers no evidence for it. The performance of the algorithms modelled were
therefore compared against that of Wessnitzer et al. [2008], who used the same
arena.

Most algorithms developed take the Cartwright and Collett [1983] Snapshot
Model as a base. This says that, given a current image and a image taken
at the home location, it should try to match landmarks on both images to each
other. At this point, trigonometry can recover the distance and direction you
have moved in from the displacement (and possibly rescaling) of the landmark
across a visual field. Assuming correct matching of landmarks, this method will
reliably iterate to return the agent to the home location.

The images used as input are omnidirectional panoramic images, typically taken
by a camera facing a curved mirror. These images were then unwrapped to
produce a fully panoramic image.

This landmark matching has been adapted to work on a number of landmark
features. For example, using small image blocks (or even single pixels) as features,
using overall displacement of the image via optical flow [Vardy and Mller, 2005],
or using Scale Invariant Feature Transform (SIFT) features.

It is also possible to use an average of all the landmarks detected, and compare
this across locations. This is known as the Average Landmark Vector model
[Lambrinos et al., 1998], and was implemented in §2.1.1

Another technique that is used works upon the observation that there is a smoothly
changing gradient of image differences. By moving such that this difference de-
creases, the agent moves closer to the home location [Zeil et al., 2003]. An
estimate of the gradient can be taken by sampling three adjacent and orthogonal
points. This was another of the algorithms implemented(§2.1.3).

Instead of sampling adjacent points, the gradient may be estimated using optical
flow techniques to calculate the distortions caused by possible movement[Moller
et al., 2006]. In a similar fashion, the displacement of the current image that
would be caused by an arbitrary journey from the current point can be estimated.
By comparing a large range of combinations of rotation, displacement and bearing
of travel, the travel which is most similar to the home location may be found. This
is known as the Warping method of Franz et al. [1998] (This was implemented in
§2.1.2)

These three implemented algorithms were tested against a series of datasets taken
in the cricket arena and one publically available dataset [Vardy and Moller, 2005].
They were assessed both by viewing their performance directly and in a series of
trials which assessed their performance travelling from one location to another.
These were done from every location in the arena to every other location, and
metrics of performance were taken: Average Angular Error (between the ideal
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bearing and the produced bearing) and Rate of Return(the number of trials that
successfully returned to the original position).

It was found that when artificial landmarks were present, ALV performed best,
closely followed by Gradient Descent. When there were Blank Walls, none of the
algorithms performed at all well, but Gradient Descent had the best performance.
In the Natural Scene dataset, Gradient Descent performed best.

These algorithms were also implemented on a robotic platform. This appeared
to work well, although it was not systematically tested.
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1. Cricket Trials

1.1 Introduction

One of my aims was to repeat the Wessnitzer et al. [2008] experiments using
a different paradigm. This would provide independent confirmation of their re-
sults, and, it was hoped, inform my comparisons of robotic algorithms with their
behaviours. Multiple pilot experiments were performed, in order to test possible
paradigms (Appendix A). The paradigm that was chosen was that of varying the
illumination of the arena in such a way as to correspond to the position of the
crickets. The hope is that crickets, having a natural affinity for the dark, would
prefer the dark areas of the arena, and thus exhibit homing behaviour. While
in the pilot experiment, I varied the illumination by hand, this was not feasible
for controlled trials. I also needed to record the position of the cricket, for later
analysis of their movements.

1.2 Overview of system

In order to vary the lights with the crickets position, an image of the arena
was first captured from an overhead webcam. This was processed to remove
extraneous information, and then subtracted from a stored background image to
locate the cricket. Depending on the crickets position, lights were activated or
deactivated via a computer controlled relay board. This change in illumination
also informed the background subtracted from the current image.

1.3 Details of Equipment

The arena I used was the same used in Wessnitzer et al. [2008]. This arena
consists of a circle of 40cm in diameter, placed on a thin sheet of metal. This
was placed upon a heated tank in the original experiments. This metal sheet was
marked out with 1cm subdivisions due to earlier capture of panoramic images of
the arena by Michael Mangan. These markings proved impossible to remove. In
order to remove these markings I inserted a thin sheet of paper. This I judged
preferable to having visible markings remain, but, being more absorbent of odours
than metal may have let the crickets leave scent trails. Above the arena was a
wooden frame 92cm in height, with a bar running diagonally across the center
from which a Logitech webcam is mounted. Hanging from this upper platform is

5
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a circular curtain which conceals the room from the floor of the arena. To further
insure isolation, blackout curtains are attached around the outside of the frame.
Lights were arrayed around the platform facing down. As work progressed, more
and more lights were added - initially only a few desklamps were used, but by
the end a fluorescent bulb, a halogen floodlight and 3 desklamps were arranged
around the outside, as well as a infra-red light (discussed later)

1.3.1 Controlling the lights

The output of the motion tracking is switching of lights. Due to the high power
demands of the lights, it is not possible to drive them directly from the computer.
Instead, a relay board was needed. After consultation, I purchased a parallel
port controlled relay board. This received a 5V control signal from a computers
parallel port and used it to switch a relay which could handle mains voltage .
Originally the intention was to us a university supplied DICE machine with a
parallel port to send this control signal. However, sending this arbitrary signal
requires intervention from a user with “root” access, which could not be obtained.
It was therefore necessary to send the 5V control signal via a “Phidgets” interface
board 1, which was on hand. This was in turn controlled by a USB connection
and the available “Phidgets” library. Using this library, a small C utility was
written, set pin1 , which took as an argument either “1” or “0” for “on” or “off”,
and which was controlled from MATLAB.

The relay board was used with a normal household extension cord. This provided
4 simultaneously switchable sockets. Using this extension cord instead of directly
splicing into a lamp’s cord enabled me to vary the quality and type of lights used.
It also had a LED indicating whether power was being supplied to it or not -
something that came in handy with sometimes unreliable lamps.

1.3.2 Image capture

To capture images of the cricket I used a standard USB webcam. This was
usefully already mounted on a frame above the arena. This I retrieved frames
from using the mplayer utility , using the following command:

mplayer tv:// -tv driver=v4l:width=320:height=240:device=/dev/video0

-saturation -100 -vf framestep=4,crop=190:190:60:10 -vo pnm

This, decomposed, takes a stream from /dev/video0 using the v4l library (
mplayer tv:// -tv driver=v4l:) at 320*240. It also reduces it to a grayscale

1PhidgetInterfaceKit 8/8/8 (http://www.phidgets.com/products.php?category=1&product id=1018)
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image, something done here because for the speed benefits as opposed to do-
ing this in MATLAB. (Note that this unfortunately does not change the type
of the image to grayscale - however, all three channels are the same, so dis-
carding all but one channel produces the same result.) It also applies (-vf
framestep=4,crop=190:190:60:10) video filters in order to crop the image to
a square centered on the arena itself - this was done to reduce the filesize, and
(in earlier versions of the code) prevent movement in the background from in-
terfering with the cricket detection. It also reduces the framerate to one in four
frames received from the camera - again this is used to reduce the eventual size of
the images stored, and allow MATLAB sufficient time to process each frame (al-
though it copes gracefully with receiving more frames than it can process). This
could easily be increased should the framerate prove to be a problem, but this
framerate seemed to be quite sufficient. Finally, -vo pnm outputs the resulting
stream into a series of consecutively numbered portable pixmap images (ppm).
These are stored in the directory the command is run.

To transfer this image data into MATLAB I wrote a function, latest im.m, that
takes a sequential number and a directory, and retrieves the image corresponding
to that offset from the directory. This image is reduced to a single channel, and
then passed back to the main function for processing. The sequential number is
obtained by taking an offset from the total number of files listed in the directory
- if it is greater than last time the loop was checked, a new image is retrieved. In
this way, the latest stored frame is captured.

1.3.3 Thresholding and motion detection

To detect the cricket position, the following algorithm is used (implemented in
crick loc.m):

Inputs :
curr image : 190 by 190 array o f b r i g h t n e s s va lue s
bg image : 190 by 190 array o f b r i g h t n e s s va lue s
mask : 190 by 190 binary mask array

f o r each frame :
curr image = gauss ian smooth ing ( curr im )
bg image = gauss ian smooth ing ( bg im )
image = curr image − bg image
image = image ∗ mask
c u r r e n t p o s i t i o n = index o f max po int ( image )
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Given the constraints placed upon the input images, this simple system is suf-
ficient. The Gaussian blurring is applied because the camera feed is very noisy,
especially under low light conditions. This noise can occasionally be greater than
the difference between the dark of the cricket and the light of the arena floor.
The cricket, however, is the only region with a consistent difference. The mask is
applied due to earl difficulties - since the image supplied is square, and the arena
is round, even with the tightest possible crop, the corners of the image showed
the curtains surrounding the arena. If these curtains were moved between the
background image and the current image, then they would register as a differ-
ence, and usually end up being consistently favoured over the cricket (being a
relatively larger target).

This simple subtraction algorithm is fed by run detector.m. This loads the
background images and the binary crop mask and then enters an eternal while
loop. While in the loop, the latest frame is grabbed, and crick loc.m is ran on
it. The background mask is chosen to correspond to the internal representation
of the light level. If the crickets location has changed from one region to another,
the light is changed by calling the set pin1 utility. Finally, the current data -
cricket co-ordinates, current state of the light, and timestamp is appended to a
matrix, and the matrix is then saved to disk. The current image is displayed,
with the different regions displayed and the current estimated cricket position
marked.

Before each trial was run, it is necessary to capture a background image under
both light conditions, set the target area and manually mark the region cor-
responding to the arena floor. For the sake of sanity, this was scripted. This
was also stored individually each time I ran a trial, in order to reproduce the
image subtraction later. These masks had to be collected each time as small
shifts (in the camera position, for example) led to edges being seen as differences.
The camera mount, while stable enough for each run was not secure enough to
avoid cumulative error from being introduced: the data collected would become
worse upon each trial unless new masks were regularly collected. The crop mask
collected here is applied on top of the crop performed by mplayer.

One recurring problem was that of blooming. When the light levels change from
high to low, the camera takes some time to change exposure levels. This leads
to a few frames of being completely oversaturated and containing only white
pixels, or being undersaturated, and “streaky”. Obviously this is a problem for
the background detection, as the cricket is not visible. Consequently the location
of the cricket is estimated as being the location in the background image with
the greatest difference from the white or black values currently being read as the
current image. This problem can be particularly bad if it causes the new cricket
location to be estimated as in the other region. This can lead to a loop where the
lights quickly alternate, only locating the correct position of the cricket (in the
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dark area) when the lights are on. This “strobing” is not desirable as it muddies
the association between location and light level for the cricket.

To solve this, I introduced thresholds. For each frame, the mean pixel brightness
was calculated. If this fell within 10 steps of the brightness of a typical frame
in this light condition then the frame was used. If not, it was ignored and the
cricket was assumed to have maintained its previous position. Typically, after a
few frames the camera would have adjusted to the new light level and tracking
could continue. Values were not taken from the background images because of
issues both from noise and from issues where the brightness of the illuminated
image seemed to oscillate slightly. This oscillation was presumed to be an artifact
of the autoexposure function of the webcam I was using.

This helped resolve the problem, but was less than ideal. The system lost all
sensitivity to the crickets movements at just the time that they were near the
dividing line. The camera used had previously been modified to remove the infra-
red filter common in webcams. This meant I was able to add a visible light filter
to the front, and have its sensitivity largely restricted to the infra-red range. With
the addition of a constant infra-red light source (a normal lamp with an infra-red
bulb added) also filtered to remove visible light, the illumination experienced by
the camera is far more constant. Since crickets are not sensitive to infra-red light,
this illumination does not affect them. This resulting system still has variations in
illumination, but they are reduced. This causes a further increase in performance
very cheaply, and allows the dark condition to be closer to complete darkness.

1.3.4 Limitations

The system designed serves its purpose: It tracks a cricket, modifies light condi-
tions, and continues tracking the cricket in these modified light conditions. Due to
the nature of the task, it can occasionally fail: sometimes it detects stray matches:
even worse, the stray matches can be consistent, leading to the “strobing” loop
described above. In my final use of the system, 3 out of 55 runs suffered from
this problem. I believe this is largely caused by not taking enough care resetting
the masks betwen each run.

This does not count stray matches which did not interfere with the switching. I
estimate that 225 of 34760, or 0.65% frames suffered from stray matches with less
noticebale results. This estimate was obtained by looking at the crickets velocity
- if the cricket was moving beyond a certain threshold, then it was assumed that
the match was errant. This assumption will not hold in all cases. This same
system of estimation could have been used to remove these stray matches online
- the task is complicated there by the necessity to have a location at all times
for the cricket - if the cricket does travel faster than the threshold, the system
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will have trouble fixing onto it again. However, this trick is unlikely to work in
resolving the persistent “strobing” errors - a persistent error will last longer than
a frame and so will be seen as stationary and hence valid.

The system is not very readily generalised beyond the specific task it is designed
for: it can only track one object, it requires there to be contrast between the
ground and the target, it is not tolerant to shifts in the camera. It is also not
especially accurate: it only finds one spot within the target, does not find a
consistent point, for instance the centroid. As a result, a stationary cricket may
be interpreted as a cricket that is shifting slightly. However, for tracking single
objects against a stable background from a stationary position it works effectively
- this added precision is not needed for the purposes of later trials.

Another desirable feature would be an ability to track the direction the cricket is
facing - this is readily visible with human eyes from the image feed, and in any
case the cricket’s movement could be used to provide confirmation. If the cricket
rotates, this would strengthen the case for any algorithm that requires rotation
(but a lack of evidence not weaken it: the cricket may merely do this mentally).

1.4 Trials

While cricket behaviour was observed while the setup was developed, it is impos-
sible to gain conclusive results from casual observation. This is due to individual
differences between the crickets, inconsistent interpretations of their movement,
and a lack of consistent application of stimuli. To properly evaluate their move-
mentit is necessary to view multiple crickets under controlled conditions. To this
end, a series of trials was ran.

The arena was bisected into a “light” arena and a “dark” area of equal sizes.
From this it is easy to compare preferences for each state of the light. Similarly,
it is easy to compare the time spent close to the boundary area. It is only
slightly more difficult to compare the velocity of the cricket at every position
in the arena. On the final trial, the landmarks were rotated by 90 degrees. If
the crickets retain a knowledge of their position relative to these landmarks they
should now have changed preferences. This final condition is not necessarily
very reliable: Wessnitzer et al. [2008] showed that crickets could use subtle light
gradients in the screening curtain above the landmarks. Due to the addition
of a non-uniform source of light above the arena, this problem has if anything
increased. In addition, the crickets will be acquiring information about the areas
which produce light and dark from their movements in the final trial.

The experimental hypotheses that will be tested are the following:
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• The crickets have a preference for the dark

• The crickets have an aversion to the boundary and the sudden change of
light

• When the crickets are in the light half of the arena they will prefer to remain
close to the boundary

• The crickets will display learning behaviours - improving their performance
in later runs

• The crickets will maintain their knowledge about position of the areas of
light and dark relative to the rotated background

1.4.1 Procedure

The crickets used were fully-developed female Gryllus bimaculatus. These were
fed dog-food and water.

Each cricket was placed in the center of the arena and allowed to roam freely
for 5 minutes, whereupon they were retrieved and rested in a cup for 2 min-
utes. This was repeated ten times, plus one additional trial with the background
rotated. The background was a natural landscape featuring a tree and a rock
formation (The same as used in Wessnitzer et al. [2008]). Only one background
was used: the landscape was chosen as it was the one the cricket were most suc-
cessful at matching against in Wessnitzer et al. [2008]. Originally, this was to be
repeated for ten crickets, however it was only performed on five. This was due to
a disease affecting cricket breeders resulting in the unavailability of adult Gryllus
bimaculatus.

1.4.2 Results

1.4.2.1 Descriptive

As a result of these trials I now had location data for every frame captured over
55 trials (11 trials for 5 crickets). I also had the light state, the time offset for
each frame (frames were not always captured with perfect regularity), and the
original captured frame. From these, I produced this data for every trial: the
number of frames in the light half of the arena, the number of frames in the dark
half of the arena, the number of frames in the middle (close to the boundary)
and the number of frames not close to the boundary. I also produced the average
velocity moving from each frame. To eliminate the stray fixations I excluded
those frames with a velocity above a certain threshold.
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Those trials where the detector did not work properly were also excluded. Luckily,
of the three times where the lights suffered from persistent “strobing”, two were
on their tenth run (Crickets 2 and 3) . Cricket 1 was subjected to strobing on his
fifth run: this datapoint is not present, but subsequent runs are. This seemed
justifiable, as no identifiable change could be seen in its behaviour in subsequent
runs.

From the captured data a heatmap of frequency of positions can be generated
(Figure 1.4.2.1). This shows that, in accordance with expectations, the crickets
preferred to run around the outside of the arena - the wallfollowing behaviour
observed in Wessnitzer et al. [2008]. There is also a cluster towards the center
- this is at least partly attributable to the crickets being placed there at the
beginning of each run (they then often wait there for some time). However it is
not entirely attributable - the crickets did diverge from the walls of the arena in
that location. If the initial placement of the crickets were the only factor, there
would not be the small scattering of points between the walls and the center in
the light half near the boundary. This can be confirmed by viewing the actual
footage of the runs.

The locations where the crickets spent the most frames are next to the walls,
and the boundary, in the “light” side. This may well be attributed to a sudden
freezing reaction of the crickets to the change in light intensity. This can be
graphically seen in Figure 1.4.2.1 - a plot of average velocity throughout the
arena. The average velocity around the wall is lowest at that point. This does
not entirely explain the reaction, as the cricket are observed to move slightly, and
then continue remaining in the same position. It is interesting to note that this
does not occur (at least not nearly to the same extent) when they run into the
“dark”.

Figure 1.4.2.1 also shows that the crickets move faster when they are in the dark.
It also seems to show a reduction in average speed at the furthest reaches from
the boundary - these are not matched by corresponding increases in frames spent
there, so the average is not decreased by the crickets resting there (again, the
footage appears to confirm this).

While there was some variation betwen crickets, they all showed the same pref-
erences for areas within the arena. This suggests that the preferences shown are
valid and would persist in a larger trial.

1.4.2.2 Hypothesis testing

• The crickets have a preference for the dark

The crickets showed a preference for the light over the dark half of the arena. In
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Figure 1.1: A heatmap showing the cumulative position of the crickets over all
frames (Blurred slightly for clarity)



14 1. CRICKET TRIALS

Figure 1.2: Heatmap of average velocity at each point in the arena
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Figure 1.3: A typical cricket path in a single run (Cricket: 4, Run: 4)

Figure 1.4: A diagram showing the 4 sectors. Note that each is of equal area.
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total 60.91% of frames captured had them in the light half of the arena. This
disproves the first hypothesis.

This can be shown from a Wilcoxon Signed Ranks Test over all runs, which
showed a significant difference (p ¡ 0.0001).

• The crickets have an aversion to the boundary and the sudden change of
light

58.64% of frames captured had them in the half of the arena nearer to the bound-
ary. This measure is likely to be a at least slight underestimate, as the capturing
software loses track of the cricket for a few frames after they change from one
half to another. However, looking at the preference for the light and dark near
boundary sectors individually, one can see that there is a definite preference for
the light half, and an aversion for the dark half. Crickets spending an increased
amount of time in an area does not necessarily indicate a affinity for that area
- it may instead indicate a startle response of freezing to the spot, which is also
suggested by the raw footage. This is also borne out by the velocity data (shown
in Table 1.4.2.2) - The average speed near the boundary in the light half of the
arena is the lowest of all four sectors.

This can be shown from a Wilcoxon Signed Ranks Test over all runs, which
showed a significant difference (p ¡ 0.0001).

• When the crickets are in the light half of the arena they will prefer to remain
close to the boundary

This hypothesis does appear to be true. In 41.72% of the frames captured, crick-
ets were in the quarter of the arena which was in the light and adjacent to the
boundary. As noted above, this may be due to a freezing behaviour as a response
to the changing light conditions. However, it does not appear that this is the
only factor that contributes to this.

This can be shown by a Friedman non-parametric (ranked) ANOVA over all
crickets, which showed a significant difference. (p ¡ 0.05)

• The crickets will display learning behaviours - improving their performance
in later runs.

As Table 1.4.2.2 and Figure 1.5 show, there is no noticeable learning effect over
the course of the ten trials. This does not mean the crickets are not displaying
learnt behaviours: only that their learning does not operate on the same scale
as the ten trials. Responses may be learnt within a few exposures to a change
of light conditions, and thus halfway through the first trial, which would not be
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Light & Far Light & Near Dark & Near Dark & Far
19.19 % 41.72 % 16.92 % 22.17%

Table 1.1: Proportion of frames all crickets spent in each of four equal sections
of the arena: near boundary or further from boundary, in “light” side” or “dark”
side”

Cricket no. Light & Far Light & Near Dark & Near Dark & Far
1 16.74 % 48.42 % 12.76 % 22.08 %
2 12.76 % 52.52 % 15.66 % 19.06 %
3 31.88 % 31.89 % 18.19 % 18.04 %
4 14.67 % 39.19 % 19.14 % 27.00 %
5 20.10 % 38.36 % 17.88 % 23.66 %

Table 1.2: Proportion of frames each cricket spent in each of four equal sections
of the arena: near boundary or further from boundary, in ”light side” or ”dark
side”

apparent from these metrics. 2 These metrics are not particularly sophisticated:
the crickets show no signs of finding any of the sectors extremely aversive, and
hence may have knowledge of the location of the boundary line without specifi-
cally avoiding any areas.

• The crickets will maintain their knowledge about position of the areas of
light and dark relative to the rotated background

This knowledge would presumably be seen as a variation in the pattern of dis-
tribution. This is not seen in the proportion of frames spend in each sector of
the arena, which resembles closely those of the unrotated arena. Neither can a
differing pattern be seen in the heatmap of where frames were spent in the arena.

When compared against the time spent in each sector:

2In Wessnitzer et al. [2008] not much learning effects were found after the first trial, so this
is not unlikely.

Entire arena Light & Far Light & Near Dark & Near Dark & Far
41.4684 50.3519 17.7124 37.6295 81.4173

Table 1.3: Average cricket velocity for each sector, and over the entire arena
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Light & Far Light & Near Dark & Near Dark & Far
0.1463 0.4869 -0.2793 -0.7057

Table 1.4: Correlation coefficient between velocity within a sector and frames
spent within it by each trial

Run no. Light & Far Light & Near Dark & Near Dark & Far
1 17.71 % 39.94 % 19.98 % 22.38%
2 19.83 % 40.63 % 16.91 % 22.63%
3 23.56 % 37.33 % 15.68 % 23.44%
4 19.97 % 38.87 % 14.91 % 26.25%
5 20.60 % 43.26 % 16.61 % 19.53%
6 18.89 % 39.58 % 21.11 % 20.42%
7 13.75 % 48.31 % 20.35 % 17.59%
8 21.51 % 45.25 % 11.41 % 21.83%
9 19.65 % 43.80 % 14.72 % 21.83%
10 15.65 % 38.44 % 17.08 % 28.82%

Table 1.5: Proportion of frames all crickets spent in each of four equal sections of
the arena in each trial: near boundary or further from boundary, in ”light side”
or ”dark side”

Light & Far Light & Near Dark & Near Dark & Far
25.49% 40.36% 16.64% 17.52%

Table 1.6: Proportion of frames all crickets spent in each of four equal sections of
the arena for trials with rotated arena: near boundary or further from boundary,
in “light” side” or “dark” side”
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Figure 1.5: Proportion of frames spent in each sector over ten trials. Figure given
is averaged over all crickets

1.4.3 Discussion

It was disappointing to fail to find any learning effect over the trials. It is, as said
previously, still possible that learning was performed. One means by which this
could be tested would be having a final trial in which no rotation was performed
and the light switching was not running. This would test whether there was any
residual preference for the sectors, without overwriting these preferences with
new input from the light changing.

It would also be informative to test the crickets when the lights were constant,
both in the light and dark. This would provide a baseline of activity to compare
against: i.e. if the crickets have reduced velocity when it is dark, then this
provides an explanation of their reduced velocity in the dark half of the arena.
If a similar pattern of preferring to spend time in the “Light and Near” sector is
found despite the light not varying, then it makes sense to attribute this pattern
to the background and not to the lights. However, since the rotated trials showed
the same pattern, this does not seem very likely.

The finding that crickets did not prefer the “dark” half of the arena was a sur-
prise: crickets appear to prefer dark places and small holes where they may hide.
[Walker and Masaki, 1989]. This can even be shown in their preferential head-
ing towards a dark landmark [Wessnitzer et al., 2008, Honegger and Campan,
1989]. That this response is shown to be heightened by relatively short black
landmarks implies that this is used to seek out suitable hiding places. This sco-
totaxic (dark-seeking) behaviour may not truly be a preference for dark, but
only a instinctive movement towards dark things. This would explain their lack
of attraction towards the dark half of the arena. Alternatively, the crickets may
indeed prefer dark crevices even when they are not visible until they have been
entered. However, this half of the arena was only dark, it was not enclosed. It
is possible that the crickets were able to sense this (perhaps by some small light
traces from the canopy, perhaps by some other sense), and hence did not find
themselves attracted to the “dark” side.
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The strongest, and most striking finding is the crickets preference for the sector of
the arena near but not in the “dark” side. It cannot be entirely ruled out that this
is due to freezing behaviours brought on by the sudden presence of light. These
appear similar to the thanatosis described in Nishino and Sakai [1996], Nishino
[2004]. It does not appear as long lasting, however, and is followed by occasional
small movements which are entirely uncharacteristic of thanatosis. That there is
a real preference for this area can be seen in the seeming preference for a path
along the middle of the arena in the light. I would hypothesise that this is due
to the cricket’s desire not to stray too far from the safety and concealment of the
dark, which at the same time continuing with the exploration of the arena. Such
a hypothesis could be tested by applying a threatening stimulus to the cricket and
observing its response. Such a threatening stimulus would be difficult to generate:
most threats can be localised to a direction by a cricket by means of its sensitive
vibration detectors. The abilities of these are documented in Dangles et al. [2007]
(albeit in another species), where they have been shown to detect the direction
of approaching predators at some distance. Producing a convincing threat that
does not produce this directional information would be challenging (perhaps from
directly above?), as well as indicing the previously discussed thanatosis.

The crickets again showed dogged persistence in pursuing a strategy of thigmo-
taxis, or wallfollowing. This has been observered in many previous arena set-ups
involving crickets [Wessnitzer et al., 2008, Kastberger, 1982]. This time it ap-
peared moderated by the differing conditions between the two sides of the arena.
Not only was their speed interrupted when they crossed the boundary line, they
also showed an aversion to the two ends of the arena furthest from the boundary.
(as can be seen in Figure 1.4.2.1). That this data can be collected from crick-
ets which are locked into a pattern of thigmotaxis is valuable - this time is not
excluded from the data.

It can be seen that in several ways the results obtained appear to differ from
those obtained in the pilot experiments. While this may be partially attributed
to more rigorous experimental methods, there are other possible causes which
suggest directions for future work. Notably the reaction of the cricket towards
the dark area appeared to change. This may also be attributable to the varying
intensities of light produced as the setup matured. Initially there was a strong
bright light and moderate dimness. When the light was moved further away the
intensity of the light decreased according to the power-law, and hence produced
much less contrast. This was noticeable in a lessening of the crickets reactions to
the varying light. In order to increase the contrast, the dark condition was made
darker (by use of blackout curtains) and the light condition was made lighter
(by the increasing addition of yet more powerful bulbs and lamps). The end
result was an even more marked contrast between light and dark than existed
in the initial pilot experiment. It is quite possible that the crickets responses
to complete, or near-complete dark differ from the crickets response to dimmed
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light. Varying the different intensities of the light and the dark conditions may
produce different results.

In the initial pilot experiment, a small area was switched to dark as opposed to an
entire half of the arena. This was my eventual intention with the more developed
setup - however the time constraints of perfecting the cricket detection systems
and running the experiments themselves prevented this. Evaluating the crickets
performance in this system it can be seen whether there is a definite attraction
to the area near the dark - the crickets have no cause to travel into the centre of
the arena (and will not, usually, being transfixed with thigmotaxis). If a cricket
does, it does not tend to pause there for any length of time - preferring corners, if
not crevices. If this setup was tried and these behaviours were found, this would
provide even stronger evidence that crickets have a preference for remaining near
dark areas.

One aspect of my experimental setup I was not happy with was the use of a paper
covering for the floor. This readily allows scent traces, as well as signs of wear
caused by the crickets themselves. A smooth, wipeable surface is preferable. I
do not, however, think this was a large factor in my results - the response of
crickets between the first and last trial were fairly consistent and did not show
an aversion or preference learnt between crickets for any areas.
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2. Modelling & Algorithms

In this section, I evaluate the plausibility of several algorithms of visual homing
as models of cricket visual homing. I have also attempted to determine the
suitability of using such algorithms for homing on a robotic platform. To do this,
three algorithms have been implemented and tested against 3 datasets recorded
in the cricket arena and one commonly used publicly available one. These have
also been implemented on a robot platform, which attempts to home within
the cricket arena. The three algorithms I have implemented are the Average
Landmark Vector (ALV) model [Lambrinos et al., 1998], Warping [Franz et al.,
1998], and Descent in Image Distances [Zeil et al., 2003].

2.1 Algorithms

2.1.1 Average Landmark Vector (ALV)

The Average Landmark Vector (ALV) model [Lambrinos et al., 1998] is a sim-
plification of the Landmark model of Cartwright and Collett [1983]. While the
Landmark model attempts to determine a vector based upon all the landmarks
present in a scene, the Avergae Landmark Vector averages these by finding the
average of all of these to produce a single virtual landmark.The homing bearing
can be found by subtracting the vector from the home location to the landmark
from the vector from the current location to the landmark. his is an improvement
upon the Landmark Model because it requires less storage of information: only
a single vector must be stored to find a route back to the home position. It also
negates the matching problem: it is not necessary to identify landmarks, only to
separate them from the background.

This does trade off with the requirement for a reliable compass direction to be
known for ALV to work. This is necessary to work out the relative positions of
landmarks from the home position and from the current position. This is not
a huge ecological obstacle for the cricket and the desert ant in the wild (which
the algorithm was designed to match) since they both have polarised vision and
can thus extract compass information from the sky [Homberg, 2004]. However,
in Wessnitzer et al. [2008] the crickets were capable of homing without a source
of polarised light, so this cannot be the entire explanation. A “visual compass”
can be used instead, which works in much the same way as the gradient descent
method( §2.5.2). This is unreliable and carries a large overhead (it is necessary
to keep a detailed representation of the home position, frustrating the parsimony

23
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of ALV).

Inputs : home image = Image at home p o s i t i o n
current image = Image at cur rent p o s i t i o n

home landmarks = f e a t u r e d e t e c t o r ( home image )
home ALV = mean( home landmarks )

current landmarks = f e a t u r e d e t e c t o r ( current image )
current ALV = mean( current landmarks )

homing vector = home ALV − current ALV

ALV obviously has a heavy reliance upon the landmark detection. In Lambrinos
et al. [2000], it was tested successfully - however, this was in a virtual arena
where the landmarks were precomputed. In this arena it worked well, and was
robust to the random insertion and deletion of landmarks. However in real life
systems it is dependent upon the feature detection step performed on the input
images. This must be necessarily be robust to changes of scale - landmarks will
be different distances from the robot when it is at different points in the arena,
but must be detected equally. This was not modelled in Lambrinos et al. [2000]
- the disruption in landmarks was even, and not affected by apparent size.

Biologically, however, feature (and hence landmark) detection is one thing that
eyes are optimised to do. Thus the requirement for a feature detector is, like
a visual compass, not necessarily a barrier to it being an accurate model of
cricket homing. However, since the algorithms we have for detecting features and
landmarks are not as good as those found naturally, it is still a problem in a
robotic model.

2.1.1.1 Implementation

To calculate the ALV, alv.m calculates a landmark vector from both the home
and the current image, and then subtracts the home vector from the current
vector. The landmark vector is calculated by im2vec.m, which passes the input
image to a feature detector (resized appropriately), and then uses the column
that each detected feature is detected in to calculate a vector direction.

Corner and feature detectors were used rather than pure landmark detectors as
they perform very similar functions. Instead of writing a feature detector of my
own, previously published ones were used. These were downloaded as MATLAB
functions.

9 point FAST corner detection [Rosten and Drummond, 2005, 2006] To speed



2.1. ALGORITHMS 25

up the processing time, images were resized to be only 100 pixels wide before
the detector runs.

Harris edge detector [Harris and Stephens, 1988] This is a well establish stan-
dard edge detector.

Loy and Zelinsky’s Fast Radial Feature Detector [Loy and Zelinsky, 2003]

Scale-Invariant Feature Transform (SIFT) [Lowe, 1999] This, as the name
suggests aims to identify features despite the scale they appear at. This
would appear to be ideal for a function that hopes to identify the same
landmarks at varying distances from them. Unfortunately, this detector
often detects more landmarks at a particular location if that location is
closer. This is a natural consequence of the resolution of the camera limiting
identification of landmarks, but causes this detector to perform worse than
expected.

A biologically accurate model of a crickets eye This was implemented by
Michael Mangan. This reduces the input image to something resembling
the vision of a cricket, then further reduces it to a one dimensional strip.
Boundary lines on this one dimensional strip were found and used as land-
marks. This was the method used in Lambrinos et al. [2001]. This is
optimised to work where highly visible landmarks crossing the horizon line
have high contrast against a relatively featureless background.

Where these had variable options, they were used with the default options. This
was done, because with such a range of feature detectors, and such a range of
options, it was infeasible to vary them manually. Applying a parameter optimi-
sation method was deemed outside the scope of the project.

None of these detectors perform particularly well on a natural scene. (An example
of this failure can be seen in Figure 2.1.1.1) For any of these to perform each
point must estimate a landmark to be at a relatively consistent place. A level
of inaccuracy is acceptable, and even occasionally useful (It can help perform
obstacle avoidance). However, it should be noted that this environment has
a relative paucity of prominent landmarks, which would lead to these feature
detectors performing badly.

In the final trials, the Harris detector was used, as it was relatively lightweight
yet performed as well as all the others.

Lambrinos et al. [2001]’s detector was also used. This seems optimised for highly
visible landmarks, possibly moved between. This matches up to only one of the
conditions. It is therefore expected that it would do best on this.
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Figure 2.1: Performance of ALV on Natural Scene. The black arrows represent
the homing vector. The background colour represents the error in the end vector
(red is worse, blue is better). The red arrows represent the Landmark Vector.
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2.1.2 Warping

Warping [Franz et al., 1998] is a more computationally expensive method. This
consists of deforming the current image in such a way as to resemble movement
with respect to the current position. Whichever of these most closely resembles
the image at the home location is chosen. This process is then iterated until the
robot has navigated to the home location.

Inputs : home image = Image at home p o s i t i o n
current image = Image at cur rent p o s i t i o n

reduced home image = reduce image ( home image )

f o r a l l va lue s o f r o t a t i o n in ro ta t i on s , d i r e c t i o n in
d i r e c t i o n s and d i s t anc e in d i s t a n c e s

reduced image = reduce image ( current image )
warped image = warp image ( reduced image , ro ta t i on ,

d i r e c t i o n , d i s t anc e )

image d i s tance = d i f f e r e n c e ( warped image ,
reduced home image )

i f image d i s tance i s s m a l l e s t yet seen
best movement = [ ro ta t i on , d i r e c t i o n , d i s t anc e ]

end

end

The process to warp the images is performed by warp image. This performs the
following algorithm

tan(ψ + δ) =
ρsin(θ − α)

1− ρcos(θ − α)

where α is the direction of the homing location, ψ is the rotation of the image, θ
is the original location of the pixel, ρ is the distance, as described above, and δ
is the final location of the pixel.

The reduced image that warping works on is a 1 dimensional strip taken from
around the horizon. In this it is similar to the some implementations of the Aver-
age Landmark Vector, as described above. It therefore has the same limitations
in terms of using only landmarks that are present on the horizon, and working
best on readily distinguishable landmarks. It, however, is not exactly the same
because it can work on more than binary data - it can use the grayscale produced
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Figure 2.2: A sample 1-dimensional image used by warping in the 3 Landmarks

dataset

by a gradient change, rather than a step change as a landmark. In this respect it
is more tolerant of naturalistic scenes than ALV. It can use pixel as a landmark,
and not just those which exist upon explicit discontinuities or features.

In this it shows its difference from those algorithms which explicitly match land-
marks - warping can match areas of varying colour which do not have the con-
trast to be detected as distinct landmarks. Nevertheless, warping does attempt
to match the position of landmarks in the current image with landmarks in the
home image.

Some more advanced implementations of Warping operate upon a 2-dimensional
image [Möller, 2009]. These show gains in performance upon the 1 dimensional
algorithm. Due to the increased complexity and lack of substantive qualitative
difference in performance from the 1-dimensional algorithm, these were not im-
plemented.

It is not necessary to perform computationally expensive exhaustive global search
to perform warping. It is possible to use more parsimonious search techniques(It is
worth nothing that the search space is not without local minima). For simplicity,
however, I have used global search.

Warping makes an assumption that all landmarks are an equal distance from
the current position of the robot. While this will obviously not remain true,
it is robust to violations of this assumption. This contrasts however, with the
assumption made by ALV and Gradient Descent that there is an even distribution
of landmarks. In both captured sets of images, but especially those captured in
the arena, all the landmarks are located in a ring around the outside of the arena.
This more closely conforms with Warping’s expectations of landmark distribution
than ALV’s or Gradient Descent’s. Since all three are robust to this assumption
being violated, this may not matter significantly to the relative performance.

It is commonly thought that Warping is less biologically plausible than other,
more parsimonious algorithms. This is due to the necessity of storing a represen-
tation of the entirety of the scene at the home location, and the high computa-
tional complexity of calculating all the combinations of rotations, distances and
directions.
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2.1.2.1 Implementation

warping.m begins by reducing both the current and home images to a small strip
using reduce for warping.m, described below. It then iterates over 32 possible
directions and 10 different distances (evenly spaced), and for each combination
calculates the warped image. These are then compared against the input image
by using the sum of squared errors. Finally, the values which produce the smallest
distance are read off, and returned. This continues until the robot has reached
the home location (a stopping threshold was not defined, as the position is known
externally when using the gathered datasets)

The other algorithms I have been comparing Warping against assume that rota-
tion is constant - and the images I provide have a rotation of zero. To provide
a level playing field and to make my implementation more efficient, I have not
iterated over rotation of the images themselves (though this was initially imple-
mented, it is now commented out). Before this was done, performance was only
slightly worse than it is now -only in a few positions did the algorithm think that
the correct orientation was anything other than rotated.

Images are compressed into a single strip by reduce for warping.m. This per-
forms Gaussian convolution upon the images, then selects the strip of pixels along
the midway point of the images and uses only them. This line of pixels is then
reduced to a fifth of their size, in order to speed up the process of warping them.
Ironically, it is this preparatory process that takes up the most time. The Gaus-
sian convolution is performed in order to remove any transient landmarks from
the scene - such as noise and local detail.

warp image.m uses the warping equation described in §2.1.2. It uses this to
calculate the displacement for every pixel position in the original. This shift,
together with the pixel values are then passed to interp1, an inbuilt MATLAB
function that interpolates the pixel values. This produces a output of the same
length as the original input image, with an average taken of points where the
image has been compressed, and interpolation performed on points where the
sampling frequency of the warped pixels is less than the sampling frequency of
the output pixels. This was done in order for the image at the home location to
be identical in format to the warped image. This allows easy computation of the
difference function

Since the values used in warping.m are fixed, it would be possible to use a lookup
table to speed this section of the code. This optimisation was not done because
the code presented here is not particularly slow running in MATLAB.
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2.1.3 Gradient Descent

Gradient Descent, or Descent in Image Distances, first developed by Zeil et al.
[2003] is based upon that observation that the view from near to the home location
is more similar to it than the view from further away. This similarity measure is
measured in the Root Mean Square (RMS) of the Sum of Squared Errors (SSE):√√√√ n∑

p=1

(ip − jp)2 (2.1)

where n is the number of pixels in the image, i is the home image, and j is the
current image.

To use this metric of similarity a gradient descent method must be used. There
are many of these: One of the simplest is “RunDown” [Zeil et al., 2003]. This
moves in a random direction until the gradient starts decreasing, and then changes
direction. (This is similar to the Conjugate Gradient Method of gradient descent,
where the difference surface is a mathematical function of the position.) A more
complex model of this has been performed by simulating the chemotaxis per-
formed by C. elegans. [Zampoglou et al., 2006].

The “Triangular” gradient descent method [Zeil et al., 2003] takes samples from
three separate positions, and from this triangulates the local gradient. By trav-
elling in the steepest direction down through this gradient, an accurate vector
towards the home location can be obtained. This is an approximation of the
Steepest Descent Method [Mitchell, 1997]: instead of calculating the gradient for
the current position, an estimation is obtained by triangulating from three local
points.

A further development on this technique is the Matched Filter Descent In Image
Distances(MFDID) of Moller et al. [2006]. This approximates sampling several
sample points infinitesimally close to the current image using similar techniques
to the Warping method of Franz et al. [1998]. This has advantages in not requiring
movement in order to obtain a non-random direction of travel. This has more
ecological validity, because small exploratory movements have not been observed
in crickets (or other insects) when they are attempting to home.

2.1.3.1 Implementation

Due to its superior performance and conformity with the inputs and outputs
passed to the other homing methods, the “Triangulated Descent” method of Zeil
et al. [2003] was implemented. The main function gradient.m takes four images:
a home image, an image from the current location, and two image from specified
offsets from the current location. It finds the RMS error of each of the the local
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images compared against the home image by using the square root of sse.m (This
calculates the Sum of Squared Errors for two arrays of equal size).

triangulated descent.m then calculates a bearing by taking the three RMS val-
ues and associated offsets as points in 3-dimensional space defining a plane (us-
ing cross(rms vec1-rms vec2, rms vec1-rms vec3)). This defines the plane
in terms of the normal, which, when reduced to its x and y components becomes
a vector towards the direction of the steepest descent of the gradient surface 1.

The intensity of the gradient of the slope (as measured by the z co-ordinate of
the normal) can be used as a crude estimate of the distance to the home location.

The two points other than the current location used for triangulation have been
selected using two schemes. One, simpler, scheme merely samples two adjacent
points in orthogonal directions. While this functions well in the image datasets, it
does not function well as a model of real performance in the robot or the cricket.
Each time a cricket decides what course to take it does not shift in order to obtain
two other viewpoints.

I have therefore also implemented another scheme (gradient path whereby the
last two points that extend in two orthogonal directions are used as directional
cues. When the run is started, the agent moves in a small right angle, and hence-
forth uses previous image locations to triangulate and estimate the difference
gradient at their current location. 2

2.2 Datasets

The easiest way to test the algorithms is to model their behaviour against datasets
of precollected images. This allows testing of the algorithms against fairly natu-
ralistic image data, while still retaining the ease of scripting repeated trials that
computers allow.All four of these sets of data were captured in a panoramic view:
a camera faced upwards into a hyperbolic mirror (or ball bearing), and hence the
entire scene was captured.

In development, they were tested against a freely available set from the University
of Bielefeld[Vardy and Moller, 2005]. This was captured across the floor inside a
compting lab, and so is relatively naturalistic. There are 10 by 17 images offset
by 30cm each (leading to an area of 2.7m by 4.8m being covered). This will be
referred to as the bielefeld original dataset.

1There are, of course, two normals to the plane. The correct one was was returned by
inverting the normal if the normal travelled from above the plane to below it.

2This caused a large number of complex conditions to be added to catch repeating loops
and store previous image data, which is done in walk path.m (§2.4.1)
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Also used were captured images from the cricket arena. These were captured by
Michael Mangan. These were captured at distances of . These were taken in four
conditions:

• The natural background used for the cricket trials. (Natural Scene)

• A scene with no visible markings on the walls, just smooth white walls.
Some slight light gradients are visible.(Blank Walls)

• A scene with 3 large black landmarks visible on the walls, which are other-
wise blank (3 Landmarks)

• A scene with 2 large black landmarks visible on the walls, which are other-
wise blank (this was not used)

To unwrap the Bielefeld data, a modification of a GUI tool (omni unwrap.m)
for unwrapping panoramic images was used [Mabius and Tang]. The parameters
we obtained by specifying the center of the images, and the radii forming the
vertical upper and lower bounds of the image. This was done for every image in
the dataset as a preprocessing step, to speed the performance of the algorithms.
To unwrap the data obtained from Michael Mangan, his code was used: this had
used external reference to calculate the height of every distance from the centre,
and then iterated through these, reshaping a circular ring of pixels as a row of
pixels. This, not guessing at the distortions of the image, was more accurate. This
was not done for the Bielefeld data, because there was no access to the camera
used to capture the data, and because the output of omni unwrap2.m appears
sufficiently undistorted. All three algorithms used are robust to small distortions
from unwrapping: warping uses only a small slice of the image, ALV operates
either only on a small slice, or on found features (which are themselves robust
to small distortions) and image gradient merely requires that the distortions are
consistent (which they would be).

This panoramic view closely approximates a cricket’s field of view.

2.3 Robot

While the image datasets allow more experiments to be carried out in a controlled
fashion, they lack certain features of the real world. Most notably, the sampling
of positions within the arena is limited to a grid. As a result, it is only possible
to move in one of four directions. This is obviously not ecologically valid, and no
doubt has a detrimental effect on homing performance. In addition, the datasets
do not suffer from transient noise introduced by the camera, distortions in the
light, have no problems with the misalignment of images. All of these things can
be modelled, but it is easier to test the code upon an actual robotic platform.
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Figure 2.3: The captured panoramic image (from bielefeld original)

Figure 2.4: The image after unwrapping
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This is useful if for no other reason than it exposes sources of error that one
would not necessarily have thought to model. Since my implementation of the
homing algorithms takes a sufficiently modular input and returns a sufficiently
modular output, I have decide to implement adapt the algorithms to work upon
a robotic platform.

The robot used was a Khephera II. This used the wireless camera system that
was used to capture data by Michael Mangan. The image setup is therefore very
comparable with the Natural Scene dataset.

This robot was run inside the same arena that the crickets were tested in. The
overhead webcam could then be used to track its performance at the homing
task.

2.3.1 Implementation

The implementation was fairly simple. An unwrapped image taken at the target
location(the image has to be taken at the same orientation as the start position
due to the lack of visual or other compasses) is passed to run homing.m The
following loop is then entered:

1. Get current image

2. Unwrap current image

3. Perform homing using the currently selected algorithm

4. Turn the the amount necessary to orient the robot towards the home loca-
tion

5. Rotate the home image by the same amount (to keep both current and
home images oriented)

6. Move forwards a set distance

7. If the proximity sensors are below a certain threshold, move away from the
obstacle (detect walls.m

8. Pause - this gives the camera time to recover from the noise caused by the
motors.

9. (Save the quantity of rotation)

While the basic “get image / find direction / move” cycle is obvious, there are
several additional features that were added due to iteration and testing. The
rotation of the home location to match the current image was done to avoid the
necessity for a complex visual compass system. This system relies upon dead
reckoning. Due to the small size of the arena, this appears sufficient. Rather that
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rotating back to the original orientation, it was decided to avoid errors caused by
dead reckoning drifting out of alignment by excessive movement3 by rotating the
home image, This has the advantage that it is non-destructive, meaning it can
be done upon every iteration of the loop to keep track of orientation implicitly.

detect walls.m was added after observing that the homing algorithms, when
not performing at their best, could navigate the robot towards the walls of the
arena, whereupon the robot would collide. This step merely moves the robot
forwards or backwards to allow it to turn freely upon the next iteration through
the loop.

One issue that seemed to be persistent was a failure of the signal from the video
feed. This was eventually traced to the Khepera still attempting to move in order
to increment its steps by the correct amount. This continual straining produced
a voltage drain enough to completely ruin the quality of the video feed.

2.4 Performance

Performance was evaluated using the metrics Rate of Return (RR) and Aver-
age Angular Error (AAE), which were calculated from the traces generated in
metrics.m. These are the same metrics that were used in Pons et al. [2007]. Rate
of Return is the proportion of homing attempts that are successful, and Aver-
age Angular Error is the difference between the correct bearing and the bearing
returned.

Due to lack of time, there was no systematic evaluation of the performance of the
robotic implementation, although it did appear to have some success in homing
using Warping with the Natural Scene background. The dead reckoning was
tested and appeared to be constant for at least 10 iterations of movement.

2.4.1 Methods

metrics.m iterates over the entire given dataset, attempting to home from ev-
ery point to every other point using a given algorithm. To do this, it calls
walk path.m. The function walk path.m iterates from a given start location,
attempting to reach the home location using a given homing algorithm. The
bearings taken at each step, and whether the run was successful (or how it failed:
did it become circular, come off the edge of the arena, or attempt to reference a

3This is also the reason that kturn.m turns clockwise or anticlockwise, in order to minimise
rotation.
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Warping ALV Gradient Descent Gradient Descent (prev. locs.)
Natural scene 1.35 1.51 1.0253 0.90
3 Landmarks 1.54 0.89 0.94 0.95
Blank walls 1.45 1.45 1.24 1.22

Table 2.1: Mean Average Angular Error (in radians) for combinations of datasets
and algorithms

Warping ALV Gradient Descent Gradient Descent (prev. locs.)
Natural scene 0.0357 0.0170 0.1613 0.3248
3 Landmarks 0.0147 0.0872 0.1753 0.2789
Blank walls 0.0213 0.0248 0.0438 0.0742

Table 2.2: Mean Ratio of Return for combinations of datasets and algorithms

point which was off the edge of the arena) are returned. It is in walk path.m that
the gradient path variant of the Gradient Descent algorithm is implemented.

In order to visualise the performance of the algorithms, uigraph.m was used.
This shows, for any point, the bearings to home and the degree to which these
vary from the correct bearing. It also shows an estimate of the distance to the
home location, as well as the Landmark Vector for ALV, and the RMS difference
surface for Gradient Descent.

2.4.2 ALV

It was found that the performance of ALV was dependent upon the landmark
detector. This had to return a consistent vector to a single “Virtual Landmark”
(VL) from all points within the arena for ALV to perform well, which neither
“harris” nor the Lambrinos et al. [2001] detector did on most datasets. (Ex-
ploratory testing suggests that none of the other detectors performed better).

Often there was a distinctive pattern of homing, where correct vectors would be
generated, but only from two opposing directions(Figure 2.4.2). This resulted
from the landmark vectors being consistent, but failing to change in intensity
with the distance to the virtual landmark. With only the direction and not the
distance to the landmark known, it is impossible to locate the home target more
accurately than upon a single line.

The dataset where ALV functioned best was on 3 Landmarks. While the vectors
to the Virtual Landmark were inconsistent, they were sufficient to allow the
algorithm to home. This homing was sometimes unreliable when approaching
from certain directions and nearby to the homing location. It could be expected
that the best functioning dataset would be 3 Landmarks due to its clear and
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Figure 2.5: ALV attempting to home to (10,9) when used with an artificial set
of unit vectors towards a Virtual Landmark at (-1000, - 1000). The red arrows
indicate the vectors towards VL, the black arrows indicate the estimated route
to home. The background colour indicates the error in estimated bearing.
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Figure 2.6: ALV when used with Blank walls. The red arrows indicate the
vectors towards VL, the black arrows indicate the estimated route to home.

consistent landmarks. Interestingly, however, the Lambrinos et al. [2001] detector
still did not perform well within the arena, despite being optimised for such
environments. It finds a uniform non-converging field in a single direction, which
may result from one of the landmarks being more attractive than the others. It
was the case in all datasets that the Lambrinos et al. [2001] detector performed
worse than “harris”, and therefore only “harris” is shown. In Blank walls and
Natural Scene, several patches can be seen. (Figure 2.4.2)These patches have
very distinct VL, and hence homing doe not work between them. This will
naturally be a failing of ALV in larger scenes - after a certain distance, a new set
of landmarks will be seen which will sum to a new Virtual Landmark. Whether
this results in a discontinuity or a more subtle change, ALV will be unable to
home.
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Figure 2.7: Warping when used with bielefeld. The black arrows indicate the
estimated route to home. The background colour represents the error in the end
vector (red is worse, blue is better).

2.4.3 Warping

On the Bielefeld dataset, the Warping algorithm performs well for a proportion
of the arena, beyond which it breaks down. The algorithm indicates a smoothly
increasing distance metric (ratio of distance to landmarks to distance to home
location) for the areas where the algorithm is able to home, and a consistent
“1” in areas where it is not. I would assume that the inability to home over
larger distances would be a lack of sufficient resolution in the reduced images
that warping operates on. This is combined with the limited set of bearings
warping could use (16 in total), which become increasingly coarse-grained as the
ratio increases.

Within the arena, Warping does not fail as often due to the distance being too
large, as it does on the Bielefeld dataset. It does however, continue to show
errors near the edge of the arena. This is more acute than with the Bielefeld
dataset, which can presumably be attributed to the arena wall taking up such
a large proportion of its field of view. In the Bielefeld dataset, the landmarks
surrounding the field of capture are usually further away (and where they are
not, the algorithm fails in a similar fashion).
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Warping is very successful in the Natural Scene dataset, failing only occasion-
ally, even when homing to a location that is right next to the arena walls. It also
correctly homes even when the ratio assigned is “1”.

Performance is degraded in the Blank walls dataset. While there are few cues,
warping is able to use subtle light cues to it’s advantage.

Performance is further degraded with the 3 Landmarks dataset, with more false
matches being made. This can be presumed to be due to there being fewer
details in order to make matches: and what details there are are ambiguous,
being perceived as a series of stark black marks for all landmarks. Landmarks
are matched by their grayscale luminosity, relative width and relation to other
landmarks, and in this condition, one of those cues is absent and another (relation
to other landmarks) is weakened due to the sparseness of landmarks.

2.4.4 Gradient Descent

In the Bielefeld dataset, Gradient Descent works well across most of the arena.
Within a very close range, it is extremely accurate, as the RMS difference surface
increases sharply. Further away, it begins to plateau, with local minima out
towards the edges. These, naturally, produce false bearings. (Figure 2.4.4)

Gradient Descent performs less well on the Natural Scene dataset, because of
the increased level of noise. This noise is likely to be part of the dataset (changing
light levels, etc), and not embedded in the scene in reality (of course, sampling
live data has more noise). There is however, a gradient, if rough, which decreases
towards the home location. A function that samples multiple local points and
uses an average to produce a vector heading would likely be more accurate.

Performance is degraded in 3 Landmarks, a product of the less well defined gra-
dient, both in terms of intensity and noise. The relative paucity of cues resulting
from the walls being blank apart from the landmarks causes this. Similarly, per-
formance is even worse in the Blank walls condition, where the noise completely
overwhelms any consistent gradient in the difference surface.

When traversing the arena, two different algorithms are used. One takes two
immediate offsets and calculates the gradient based upon these. The other is
more plausible in that it uses images from previous locations to calculate the
current gradient. The second consistently outperformed the first. This may not
be due to an innate superiority: while paths were eliminated if they formed loops,
this algorithm was was only eliminated if it started repeating itself (which took a
longer time to achieve). However, its increased performance may also have been
attributed to its ability to avoid getting caught in local minima: its reference
points could not be closer than the naive implementation.
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Figure 2.8: The RMS difference surface for bielefeld original. The home
location is (4,7)
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Figure 2.9: The homing vectors for Gradient Descent on bielefeld original.
The home location is (4,7). The background colour represents the error in the
end vector (red is worse, blue is better).
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2.5 Discussion

2.5.1 Algorithms for use in robots

None of the algorithms tested could reliably return to the home location. While
performance could be improved with optimisation, this suggests that non of these
algorithms could be reliably deployed in a “real-world” situation.

Gradient Descent performed best in these trials. The main weakness of gradient
descent was it’s susceptibility to noise. It depends upon the RMS difference
surface of captured images being smooth, and noise can violate that. By taking
several samples at each point, this could be mitigated. Additionally, a more
intelligent descent strategy can be used in order to minimise the effects of local
minima.

Gradient Descent and ALV are both relatively lightweight algorithms. ALV, for
instance, has been implemented entirely in analog circuitry upon a robot [Möller].
ALV, however, only performs well when landmarks are easily identifiable (and
depending on the identifier, cross the horizon). For more generalised natural
scenes, gradient descent would be a better choice.

Warping has scope for optimisation, however: most time is spent exploring the
search space of rotations, distances and bearings, which could well be optimised.
One possible strategy would be to explore the search space very coarsely, and
then do a more fine-grained search in more promising areas.

One weakness of both Gradient Descent and ALV is their need for an external
cue to inform them of rotation. This could be mitigated using a compass system
derived from the visual data §2.5.2.

Performance of a robot will also depend upon the distribution of landmarks within
a scene. In all the datasets used, the landmarks surrounded the space through
which the robot could move. Performance will change if the robot is moving
through a field of obstacles/landmarks.

Similarly, moving through such a field, a robot would most likely have an obstacle
avoidance system set up. Here ALV has an advantage in that it naturally performs
obstacle avoidance when moving through fields of landmarks [Hafner, 2004]. On
the contrary, warping has a tendency to move so that landmarks occlude the
home location [Franz et al., 1998].
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2.5.2 Algorithms as models of crickets

It can be seen that crickets outperform algorithms considerably. While crickets do
show variance between light conditions, in all three conditions their performance
is similar and robust. In keeping with the models, a brief exposure (a single trial)
is enough for the crickets to gain knowledge of its location.

When comparing algorithms, a clear distinction can be made between both Warp-
ing and Gradient Descent, which has a preference for the NaturalScene, degraded
performance with 3 Landmarks and poor performance with Blank Walls and be-
tween ALV, which performs best on 3 Landmarks and worse on the others. Since
crickets showed best performance with NaturalScene, Warping and Gradient
Descent appear to match better.

There is a discrepancy, however, between the performance of crickets and algo-
rithms on 3 Landmarks. The decreased performance of crickets may be explained
by the crickets attraction for the landmarks due to the scototaxic instinct men-
tioned in §1.4.3. The algorithm, being focused only upon homing, does not have
this distraction and can perform better. The crickets performance in the Blank

walls condition was attributed to a subtle light gradient in the arena [Wessnitzer
et al., 2008], as well as perceiving the borderline between the wall and the floor.
It may be that the sensing apparatus is not as sensitive as a cricket to such subtle
differences. In addition, the cricket is not restricted from using its view overhead
and the height of the floor. Warping, taking a narrow strip around the horizon,
is denied access to these cues. Gradient Descent is more able to use these cues
effectively. Subtle differences in lighting are overwhelmed by noise in capturing
each image, and the crack connecting wall and floor is a very small proportion of
the total image.

This reliance upon landmarks which cross the horizon can be mitigated in Warp-
ing by its extension to a 2-dimensional image (as done by Möller [2009]). This
would make Warping more realistic.

While the datasets have their alignment guaranteed by virtue of being collected in
that way, the crickets and the robots do not. While the robot is able to use dead
reckoning over the short distance it has travelled, it seems unlikely that crickets
would merely keep track of their orientation this way (if for no other reasons
than that they are not in continuous contact with the ground, unlike a robot).
Instead, some kind of tracking by optical flow seems likely . While only warping
supports non-aligned images, the gradient descent technique can be adapted to
align images taken at varying locations. Zeil et al. [2003] found that “Rotational
difference functions change little with distance from the reference location.” -
hence the current image can be oriented into a consistent rotation by finding the
global minima when the current image is rotated with respect to the home image.
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This can be used as a preprocessing step for ALV or Gradient Descent.

2.6 Evaluation

walk paths.m is more sensitive to failure conditions than crickets are. When a
cricket comes against the edge of the arena, it usually follows it round. When
walk paths.m comes against the edge, it gives up in failure. The same happens
if it starts repeating itself: a condition a cricket is unlikely to get into.

Performing metrics.m upon the bielefield original dataset would allow com-
parisons to be drawn against other implementations of the same algorithms, and
would allow comparison of the arena dataset against that of the arena.

It would have been preferable to conduct systematic testing of the algorithms
with the robot. The implementation was done, and the robot appeared to per-
form homing with Warping in the Natural Scene, which was expected to be the
best performing algorithm and condition. Testing in real robot platforms is a
better proof of concept than in even realistic datasets because no element can
be abstracted. The problem of orientation, which was ignored in trials upon the
datasets, was forced to be solved for trials with the robot.

In some respects, however, the robotic platform is easier. Rather than being
forced to rotate at 90 degree increments, it can perform arbitrary turns. This
allows it to travel a lot more directly towards the target. Since many of the
algorithms can be inconsistent from one location to the next, this is one reason
that the RRs are all so low. Again, the low tolerance for failure in walk paths.m

would not be present: loops and contacting the edge of the arena would both
result in continued attempts.

The easiest way to improve the performance of the algorithms would be to tune
the parameters they accept. This could be done using, for example, genetic
algorithms to find the optimal size of step to vary bearing and distance in Warp-
ing, the size of the one dimensional images used and the amount of smoothing
performed upon them. These are currently chosen due to not imposing a huge
overhead when processing while still appearing to work well.

At the cost of increasing the overhead in performing Warping further, confirma-
tion of the homing vector could be found by performing the inverse transformation
upon the stored home image, and matching it against the current image. If this
was done, the chance of local noise or occlusions affecting performance would be
decreased, which should result in an increase in performance.

Landmark detecting functions for ALV can be tested directly: an ideal landmark
detection function will have every landmark vector converge upon the same vir-
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tual landmark. This would provide a quicker way to evaluate the performance of
a landmark function than running virtual trials and evaluating the actual perfor-
mance.

One interesting part is that all three algorithms are capable of estimating their
distance from the home location. Since their accuracy varies with distance, this
information can be used to determine the likelihood that they are accurate. Since
they have varying distances within which they are accurate, a Frankenstein strat-
egy could be used, where ALV or Warping is used until the agent is close to the
target location, at which point gradient descent could be used. Similarly, in
robots, a less accurate, long distance modality could be used until the local vi-
sual homing system starts gaining confidence (expressed as a consistently small
distance).



3. Conclusion

The performance of the algorithms was not on a par with that of the crickets. The
crickets could consistently home to a set location, even with conflicting demands
(such as escaping from the arena). However, given the unoptimised nature of
the algorithms, and the relative crudeness of the input (snapshots every few
centimetres, as opposed to a continuous stream of visual data) this should not be
too surprising.

However, none of these algorithms can directly be considered to represent a
cricket’s process of visual homing. Warping is not considered realistic because
processing all of the combinations of rotation, bearing and orientation demands
a huge processing overhead, even with a more efficient search than full global
search. While it was suggested this could be parallelised with matched filters,
this is argued to still involve an unrealistic quantity of neurons [Vardy and Mller,
2005]. Gradient descent, while requiring less processing, requires movement be-
fore a homing vector can be calculated. ALV, while more cognitively plausible,
fails to use cues such as subtle light gradients, which crickets have been shown to
use for homing. Instead, it requires that landmarks be distinctively segmented
from the image.

Of course, the performance of the cricket in the arena does not directly represent
it’s process of visual homing. Crickets are, unlike robots, not singleminded in
pursuit of set aims. The crickets notably spent more time performing wall fol-
lowing behaviours and exploring the arena than they did attempting to find the
cool spot.

Indeed, it seems possible that crickets do not have a dedicated homing algorithm
at all. It is suggested by the cricket trials performed that crickets have an aware-
ness of their location in the arena, not merely distance and bearing to a single
point. Being models purely of visual homing, this is not represented well by any
of these models.

However, some characteristics of a successful algorithm may be found. A success-
ful algorithm should be robust against a range of inputs and should be miserly
with them (it should not discard information unless there is a specific reason for
it). It would be surprising if optical flow was not involved in this optimal algo-
rithm - Warping is a crude exploration of optical flow, and an improved version
of Gradient Descent, Matched Filter Descent in Image Distances [Moller et al.,
2006] incorporates optical flow information to estimate the gradient of the RMS
difference surface, and is reported to be even more successful.
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Appendix A. Pilot experiments

In order to settle on the light-switching paradigm, several other approaches were
explored.

The Tennessee Williams paradigm attempts to replicate the well known Mor-
ris water maze paradigm [Morris, 1981], originally performed on rats. It was
an initial hope that the Morris water maze could be performed directly on the
crickets. If this were possible then direct comparisons between results obtained
in the Morris water maze and results obtained on crickets could be made. This
seemed plausible: crickets are capable of swimming, and, of course, homing using
non-local cues [Wessnitzer et al., 2008, Beugnon and Campan, 1989]. To this end
a pilot trial was carried out: a cricket was placed in lukewarm water with a small
visible piece of cardboard jutting above the water. The cricket initially swam, but
soon was content to float. Even when it brushed against the cardboard it would
occasionally, but not always attempt to climb onto it and out of the water. When
a plastic platform was added below the water, the cricket made no response at
all.

Due to the crickets apparent tolerance for exposure to the water, attempts were
made to make the water more aversive. Temperature was considered - after
all, this was the aversive stimulus used in Wessnitzer et al. [2008]. Crickets,
being cold blooded, become sluggish when exposed to cold, so this was ruled out.
Heating the water was also ruled out, if only because it is difficult to maintain a
constant temperature. Upon exposure to heat, crickets have a tendency to perish.
This is the reason that Wessnitzer et al. [2008] restricted each run to a mere 5
minutes - any longer led to high casualty rates. Heat was therefore ruled out.
When the water was agitated, the cricket would persist in attempting to swim.
(I speculate that this is due to still water being a less dangerous environment
for crickets in their natural state, whereas fast flowing water is: if there is any
wind, the cricket will end up washing up against a shore, with their energy
conserved, whereas in faster flowing water they may well collide against objects.)
This gave me hope, however the crickets became if anything less attracted to the
jutting cardboard. They would now not even attempt to grasp it when they were
knocked against it. Since the Morris water maze paradigm depends upon the
animals preferring resting upon a submerged platform to swimming, this was not
hopeful. In addition, the waves in the waters surface produced by the agitation
would expose the platform if it was sufficiently close to the surface to be useful as
a platform by the cricket. Since the agitation was produced by impacts against
the side of the tank, these waves also had a directional component, which would
bias the results if agitation was used as an aversive stimulus.
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Observing the crickets, it was noted that they had an affinity for dark hiding
places. This is a common enough observation of crickets that breeder’s guides
note it as a requirement for them survive for even short term storage. With this
in mind, a trial experiment was carried out in which the aversive condition was
exposure, and the favourable condition was the crickets being hidden in a dark
place (as in Walker and Masaki [1989]). To avoid the entrance being immediately
visible, the crickets were placed upon a raised disc (again, made out of cardboard)
with a lower section surrounding it (and beyond that, the walls). A hole was
made connecting the lower section with the (obviously dark) underside of the
disc. This is, of course, not visible from the starting vantage point of the cricket
in the center of the disc. hen placed on the center of this disc, they moved to
the edges and navigated around the lower groove. As in Wessnitzer et al. [2008],
the crickets embarked upon wall-following behaviour until they came across the
hole, whereupon they usually entered it. However, this process took a very short
amount of time. This meant that it was diffcult to analyse their paths - there is
only the short journey over the raised platform and the direction upon entering
the lower groove. With such short paths to analyse, such factors as the way they
were facing when placed in the arena become prominent. Observation suggested
that the crickets did not appear to exhibit any learning behaviours - they merely
headed towards the edge and then followed the wall.

While this paradigm did not appear functional, the idea of using light as an
aversive stimuli was still good. This time, when crickets were placed in an (empty)
arena, lighting conditions were varied using a desklamp held above. When crickets
were upon a Post-it note placed near the center of the arena, the lights were
switched off. When they moved off this spot, the lights were switched on.

While the crickets continued to mainly perform wallfollowing behaviours, once
the “dark” center was found they would remain there for some time. This may
have been due to a preference for the dark, or a reaction to the change in light
conditions (freezing), or both. A cricket that had found the center would slowly
explore the limits of the area - creeping forwards until it had emerged and the
lights changed, then freezing, then retreating. This could be due to a preference
for lit areas very close to dark areas (I rationalised this as wishing to remain
near the dark area for purposes of shelter from threat while still remaining in the
light to have warning of the threats). Alternatively, it could be simply due to an
aversion to light and to changes of illumination. After some time in or near the
dark, the cricket would resume exploration - this generally meaning wallfollowing.

In an effort to explore this seeming preference for “near the dark”, I tried applying
an aversive stimulus when the cricket was in the light but near the boundary. As
with the water tank, this was agitation of the arena. My first attempts involved
a horizontal jolt, which appeared to make the cricket leap away from the point of
impact. When the bottom of the arena was struck, the response was not as strong.
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No readily identifiable pattern was perceived in either response, and applying a
consistent jolt was tricky, so this path of experimentation was abandoned.

The setup used in the pilot experiment was not ideal - I had problems switching
the light in response to the cricket position. This would become even harder is
there were no visible markings of the target location. Additionally, the light was
positioned very close to the arena floor. This blocked the view of the camera, and
provided a good additional directional cue for the crickets. Positioning the light
beyond the camera would be preferable, as would not having my face visible. To
resolve both issues, a computer was used to track the crickets and switch the
lights on and off based upon their position. The lights were resited on a platform
above the camera - this had an impact upon light intensity (discussed in §1.4.3).
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Appendix B. Metrics

B.1 Average Angular Error

B.1.1 Warping
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Figure B.1: 3 Landmarks - Warping

Figure B.2: Blank Walls - Warping
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Figure B.3: Natural Scene - Warping

B.1.2 ALV
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Figure B.4: 3 Landmarks - ALV

Figure B.5: Blank Walls - ALV
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Figure B.6: Natural Scene - ALV

B.1.3 Gradient Descent
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Figure B.7: 3 Landmarks - Gradient Descent

Figure B.8: Blank Walls - Gradient Descent
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Figure B.9: Natural Scene - Gradient Descent

B.2 Rate of Return

B.2.1 Warping
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Figure B.10: 3 Landmarks - Warping

Figure B.11: Blank Walls - Warping
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Figure B.12: Natural Scene - Warping

B.2.2 ALV
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Figure B.13: 3 Landmarks - ALV

Figure B.14: Blank Walls - ALV
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Figure B.15: Natural Scene - ALV

B.2.3 Gradient Descent
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Figure B.16: 3 Landmarks - Gradient Descent

Figure B.17: Blank Walls - Gradient Descent
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Figure B.18: Natural Scene - Gradient Descent

B.2.4 Gradient Descent (with previous locations)
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Figure B.19: 3 Landmarks - Gradient Descent (with previous locations)

Figure B.20: Blank Walls - Gradient Descent (with previous locations)
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Figure B.21: Natural Scene - Gradient Descent (with previous locations)


